Single Phase Domestic and Mini Monoblocks

Instruction & Operating Manual

Texmo Industries Est. 1956

Table of Contents

- **1.** Introduction
- 2. Warranty information
- **3.** Complying with standards
- **4.** Contents in the packing box
- **5.** Information about your pump
- **6.** Schematic drawings
- **7.** Key product specifications & features
- **8.** Cross-section view
- **9.** Pre-installation requirements
- **10.** Installation procedures
- **11.** Basic troubleshooting
- **12.** Preventive maintenance checks
- **13.** Do's and don'ts
- **14.** Important safety instructions
- **15.** Storage & handling
- **16.** Company contact information

1. Introduction

Thank you for choosing a quality product manufactured by Texmo Industries. We request you to read this manual carefully to ensure that the system you have purchased will be operated correctly.

This manual is intended to provide you with information on your product and information on installation and operation. You will also find information on how you could contact Texmo Industries, should you need further information or help and support.

2. Warranty information

Please refer to your warranty card or visit **www.taropumps.com** for more information on your warranty.

3. Complying with standards

IS 996: Single Phase a.c. Induction Motors for

General Purpose

IS 3043: Code of practice for earthing: specification

IS 8472: Pumps - regenerative for clear, cold

water: specification

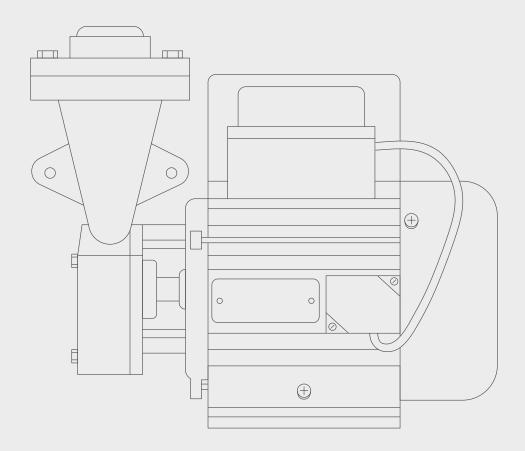
IS 13730: Specifications for particular types of

winding wires

4. Contents of the packing box

Based on the model you have purchased, your single phase self-priming monoblocks are packed along with the instruction manual and warranty card in a corrugated box.

5. Information about your pump


Taro Single Phase Self-Priming Monoblocks are manufactured using high quality raw materials and components using state-of-the-art manufacturing facilities and will give trouble-free performance if properly installed and maintained. These Self-Priming Monoblocks are compact pumping systems with the pump and motor mounted on a common shaft. As a coupling is not required, alignment of the pump and motor is assured. Installation therefore is quick. Self-Priming Monoblocks find wide application for water supply to houses, residential colonies and factories.

Prior to installation, go through this manual thoroughly and follow the instructions for installation and maintenance to ensure reliable operation. The Self-Priming Monoblock should be installed by technically qualified personnel in compliance with national and local electrical codes and as per our instructions in order to avoid electrical shocks, unsatisfactory performance and / or equipment failure.

6. Schematic drawing

View of a Single Phase Domestic and Mini Monoblocks is shown below in Fig. 1:

Fig. 1 View of Single Phase Domestic and Mini Monoblocks

7. Key specifications & features

Standard Specification of Single Phase Domestic and Mini Monoblock is shown below in TABLE 1:

Phase	Single
Power	0.5 - 1.0 HP
	Squirrel-cage Induction Motor
MatorTuna	TSP 1: CSCR
Motor Type	TSP 2, TSP 3: CSIR
	TRH, TMM, TSH, TGH: CSR
Starting method	DOL
Operating Voltage	180 - 240V
Frequency	50 Hz
Speed	2900 rpm
Duty	S1 Continuous
Insulation Class	В
Type of Enclosure	TEFC
Impeller Type	Radial
Max. Fluid Temperature	33°C
Thermal Overload Protection (TOP)	Provided in TRH, TMM, TSH and TGH Series

Product Performance Specification

Texmo Industries has a wide variety of Single Phase Self-Priming Monoblocks to meet your requirements. Please consult our Sales Team / your nearest dealer to meet your specific requirements.

Key features

The motor houses shielded type Deep Groove Ball Bearings, pre-filled with grease, to take up the radial and axial thrust loads

The rotors are dynamically balanced

Adequate motor surface area is provided for effective cooling

Energy efficient motor for low power consumption

To protect the motor from overload, Thermal Overload Protector (TOP) is provided in TRH, TMM, TSH and TGH Series

Brass forged impellers

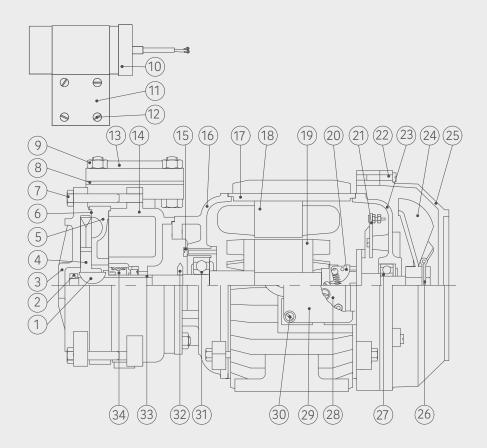
Stainless steel shaft for long life

In case of leak past the mechanical seal, a water slinger, assembled on the shaft and in the space between the mechanical seal and front bearing, prevents water entry into the motor

To reduce friction, the stuffing box - gland assembly is replaced with a mechanical seal

ELECTRICAL CONNECTION

The motors are internally wired and pre-connected with the capacitor leads

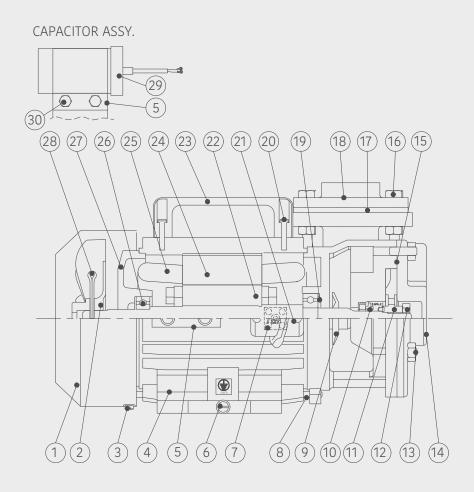


Connect phase and neutral to the terminal board

8. Cross-section view

Cross-section view of a Single Phase Slow-Speed Self-Priming Monoblock, TSP Series, is shown below in Fig. 2:

Fig. 2 Cross-section view of 10 slow speed self-priming monoblock - TSP

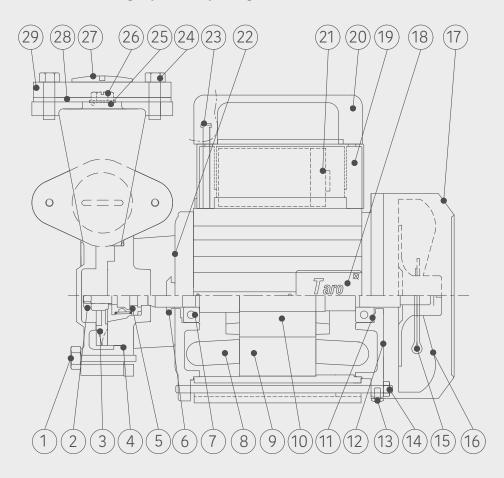

No.	PART NAME
1	Woodruff key
2	Lock nut
3	Casing cover
4	Impeller
5	S.D chamber
6	Hex. Bolt
7	Flange oval
8	Gasket oval
9	Hex. Bolt & nut
10	Capacitor
11	Capacitor clamp
12	C.H. Serew

No.	PART NAME
13	Flange oval
14	Casing
15	C.H. Screw
16	Cover dome
17	Body
18	Stator stack
19	Rotor with shaft
20	Governor
21	Centrifugal switch
22	Hex. Bolt
23	Rear cover
24	Cooling fan

No.	PART NAME
25	Fan shield
26	Split cotter pin
27	Ball bearing
28	Terminal board
29	Terminal box
30	C.H. Screw
31	Ball bearing
32	Water slinger
33	Sleeve
34	Mechanical seal

Cross-section view of a Single Phase High-Speed Self-Priming Monoblock, TRH Series, is shown below in Fig. 3:

Fig. 3 Cross-section view of 10 high speed self-priming monoblock - TRH

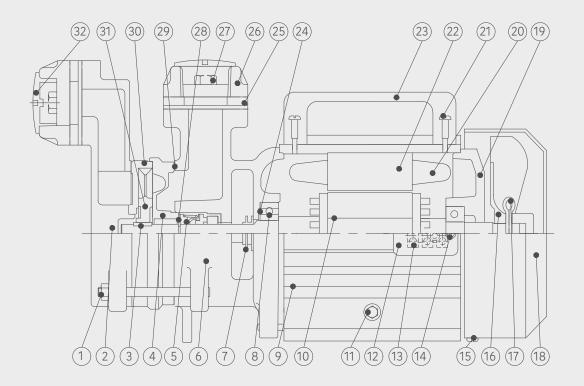

No.	PART NAME
1	Fan shield
2	Fan
3	C.H screw & washer
4	Body
5	Capacitor clamp
6	C.H screw & washer
7	Terminal board
8	Stud
9	Water slinger
10	Mech.seal set

No.	PART NAME
11	Impeller
12	Hex. Nut
13	Stud & hex. nut
14	S.D chamber
15	Gasket-circular
16	Hex. Bolt & nut
17	Gasket-oval
18	Flange-oval
19	Pre loading washer
20	C.H screw

No.	PART NAME
21	Terminal box
22	Rotor with shaft
23	Handle
24	Stator stack
25	Coil
26	Deep groove ball bearing
27	Rear cover
28	Split cotter pin
29	Capacitor
30	Hex. Bolt, nut & washer

Cross-section view of a Single Phase High-Speed Self-Priming Monoblock, TMM / TSH Series, is shown below in Fig. 4:

Fig. 4 Cross-section view of 10 high speed self-priming monoblock – TMM / TSH


No.	PART NAME
1	Hexagon head bolt
2	Hexagon nut
3	Impeller
4	O-ring
5	Mech seal set
6	Water slinger
7	Deep groove ball bearing
8	Coil
9	Stator stack
10	Rotor with shaft

No.	PART NAME
11	Pre loading washer
12	Rear cover
13	C.H screw & washer
14	Stud & nut
15	Split cotter pin
16	Fan
17	Fan shield
18	Terminal box
19	Capacitor box
20	Handle

No.	PART NAME
21	Capacitor
22	Cover dome
23	C.H screw
24	Hexagon head bolt
25	O-ring
26	Drain plug
27	Plug
28	Gasket-oval
29	Flange-oval

Cross-section view of a Single Phase High-Speed Self-Priming Monoblock, TGH Series, is shown below in Fig. 5:

Fig. 5 Cross-section view of 10 high speed self-priming monoblock - TGH

No.	PART NAME
1	Stud & hex nut
2	Suction chamber
3	Parallel key
4	Casing
5	Mech seal set
6	Delivery chamber
7	Water slinger
8	Deep groove ball bearing
9	Body
10	Rotor with shaft
11	Hex bolt & washer

No.	PART NAME
12	Terminal box
13	Terminal board
14	C.H screw
15	C.H screw & washer
16	Fan
17	Split cotter pin
18	Fan shield
19	Rear cover
20	Coil
21	C.H screw
22	Stator stack

No.	PART NAME
23	Handle
24	Pre loading washer
25	Gasket-oval
26	Flange-oval
27	Hexagon head bolt
28	Circlip
29	Gasket-circular
30	Casing cover
31	Impeller
32	Plug

9. Pre-installation requirements

Arrangement for Installation

Use the services of a professional and trained mechanic with experience in erecting Single Phase Self-Priming Monoblocks

Ensure proper safety during installation

Ensure that a level foundation is ready before erection of the Single Phase Self-Priming Monoblock. Contact the dealer from where the Single Phase Self-Priming Monoblock was purchased for the motor mounting details for preparing the foundation

General Installation Precautions

- Ensure all fasteners are tightened properly
- Use prescribed pipe sizes as mentioned on the product nameplate
- Fit the strainer provided
- After installation, prime the set before starting the pump
- Do not install the Single Phase Self-Priming Monoblock with high static suction lift
- It is recommended to assemble the Single Phase Self-Priming Monoblock on a level base with foundation bolts to prevent the pump and piping from getting stressed
- As the Single Phase Self-Priming Monoblock is air cooled, ensure that air flow to the cooling fan, located at the rear side of the motor, is not blocked
- Use a single power cable from the power source to the Single Phase Self-Priming Monoblock. Do not use a power cable with large number of joints as this can result in a significant voltage drop
- During installation, ensure the Single Phase Self-Priming Monoblock is not subject to shock loads which can damage the pumpset parts

Note	If you detect damage or discrepancy in the product, contact the dealer from whom the pump was purchased
Warning	Do not use this pump for oil, toxic, corrosive and flammable liquids. Pumping flammable liquids could cause explosion
Caution	Ensure suitable precautions are taken while lifting and lowering the product
Caution	Use trained professionals to install the Single Phase Self-Priming Monoblock
Warning	Use a power supply cable that has sufficient rating. Factor in low-voltage operation
Warning	Provide proper Earthing. Improper Earthing can cause electrical shock
Caution	Use a Megger to verify the insulation resistance of the motor. Insulation resistance should be 20M Ω minimum
Caution	Do not place the Single Phase Self-Priming Monoblock in a location subject to flooding as water can enter the motor and damage the windings and bearings
Warning	Mount the pump with its axis horizontal

Operation Precautions

Caution	The pump casing houses a mechanical seal. Do not attempt to run the pump dry as the mechanical seal can get damaged during dry operation. Ensure the pump is primed and then only run it
Warning	Switch OFF the power before working on electrical lines
Caution	Do not use this pump for pumping liquid exceeding 33°C as this may lead to product failure

10. Installation procedure

Please follow the below procedure to assemble the Single Phase Self-Priming Monoblock:

Caution

The supply voltage should be within the specified voltage range.

Water temperature for operation of the pump should not exceed 33°C

Failure to observe the precautions given above could cause the pump to malfunction and may lead to current leakage or electrical shock

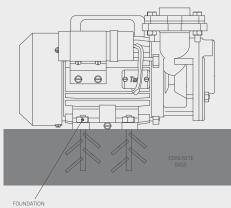
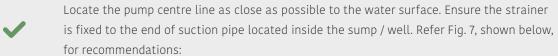
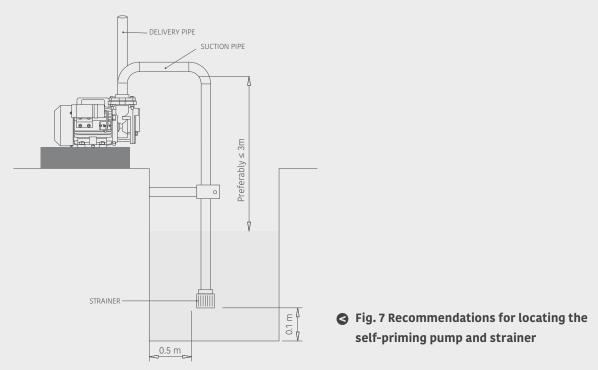
Warning

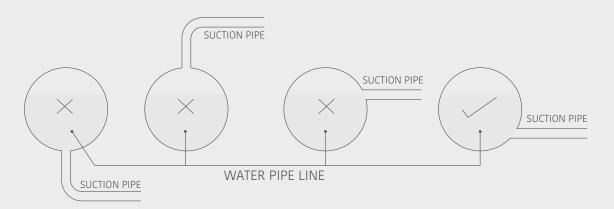
If you find any abnormalities like vibration, noise, smell, etc. from the pump during trial operation, switch OFF the pump and contact the dealer where this pump was purchased

Installation:

The following steps are executed prior to installation

- Measure the Insulation Resistance using a Megger of 500 VDC
- Ensure contact points are clean
- Connect the measuring cable to the ground conductor
- Connect the other measuring cable to phase terminal
- Ensure that the insulation resistance, as shown on the Megger, is a minimum of $20M\Omega$
- Prepare a level concrete foundation for mounting the Single Phase Self-Priming Monoblock and tighten the motor base using the foundation bolts as shown in Fig. 6 below:


Fig. 6 Self - priming monoblock on a concrete foundation - installation

- Use as few pipe fittings as possible in the suction line. Prefer using a bend in place of elbow
- Use a good quality strainer to reduce suction losses
- During priming, check the pump suction pipe for leakages
- In case the pump is used to draw water from a water line, follow the recommended suction pipe orientation shown in Fig. 8 below.

• Fig. 8 Preferred orientation of suction pipe for pumping from a water line

Electrical Installation

Observe relevant EB regulations while giving power supply to the motor

Ground the monoblock using the two earth screws provided on the leg of the motor body

Ensure electrical joints, if any, are properly and adequately insulated

Connect the cable properly to the starter terminals to avoid loose connections

Factor in low voltage operation while selecting cable size

Electrical wiring work

Warning

All electrical work must be performed by an authorised electrician in compliance with local electrical equipment standards and internal wiring codes. Improper wiring can lead to current leakage, electrical shock, or fire.

Earthing

Warning

Be sure to install the ground wire securely. Failure to observe this precaution could damage the pump and cause current leakage, which may lead to electrical shock.

Caution

Do not connect the ground wire to a gas pipe, water pipe, lightning rod, or telephone ground wire. Improper grounding could cause electrical shock.

Connecting the Power Supply

Caution	Observe relevant Electricity Board regulations while powering up the pump set
Warning	Before connecting the wires to the terminal board, make sure the power supply is properly disconnected. Failure to do so may lead to electrical shock, short, or injury caused by the unintended starting of the pump
Caution	Do not use damaged cables, power plugs, or loose power outlets. Failure to observe this precaution could lead to electrical shock, short circuit or fire

Supply connection to single phase monoblock

The motors are internally wired and pre-connected with the capacitor

Connect phase and neutral to the terminal board

In case of clarification, please refer to the Connection Diagram displayed in the inner side of the terminal box cover

Checking direction of rotation

Danger

Hazardous voltage will cause death, serious injury, electrocution.
All electrical work must be performed by an authorised electrician, in compliance with local electrical equipment standards and internal wiring codes.

Ensure pump is primed

The direction of rotation is clockwise looking from the rear end

In case the direction of rotation does not clockwise, return the set back to the dealer from where it was purchased

11. Basic troubleshooting

To prevent serious accidents, disconnect the power supply before inspecting the pump.

Go through this manual thoroughly before requesting repair. Contact the dealer from whom this equipment was purchased. Servicing and troubleshooting must be handled by qualified persons with proper tools and equipment. Common faults, root cause for these and suggested actions are provided in TABLE 2 below:

Fault	Possible causes	Suggested actions
	Faulty foot valve / strainer	Check and replace
	Pump not primed	Prime the pump
	Air leakage on the suction side	Check and correct for leakages
Pump does not discharge	Suction lift too high	Reduce the static suction lift
water	Foot valve not sufficiently submerged	Lower the foot valve and ensure that the foot valve is submerged at least 1 metre below the free surface of water
	Motor coil burnt	Rewind the motor
	Low-voltage operation	Operate in the recommended voltage range
	Low voltage operation	Operate in the recommended voltage range
	Wrong direction of rotation	Repair in the nearest authorized service centre
	Static suction lift high	Position the pump within recommended suction lift
Less discharge from pump	Total head higher than specified	Ensure delivery head within specified value
	Leaky pipes	Check the piping system and rectify the faults
	Smaller pipe size used when compared to nameplate recommendations	Use recommended size of pipes

Fault	Possible causes	Suggested actions
	Discharge pipe internally coated with depositions	Clean the pipe
Less discharge	Foreign bodies lodged in impellers	Check the impellers and remove the foreign bodies
from pump	The valve in the discharge pipe is partly closed / blocked	Check and clean / replace the valves, if necessary
	Impeller is worn out	Check and replace
	Weak capacitor	Replace capacitor
Total head	Running at low-voltage	Operate in the recommended voltage range
developed is too low	Defective rotor	Change the rotor
	Rotor rubbing against stator ID due to bend.	Check and replace the rotor
	Bearings worn out	Dismantle and replace worn out bearings
	Pump cavitating due to high suction lift	Reduce static suction lift
Pump runs rough and	Pump not grouted	Grout the pump
noisy	Rotor shaft is bent, resulting in rotor rubbing against stator bore	Replace rotor shaft
	Impeller rubbing against pump casing	Check rotor run out at location of impeller. If excessive, replace rotor
	Mechanical seal damaged	Replace mechanical seal
Pump leaks excessively	Casing Gaskets / Delivery Flange gasket damaged	Check and replace gaskets
	Pipe line / pipe fittings damaged	Check and replace piping

Note	Conduct trial operation after maintenance
Note	Dispose replaced components and oil with appropriate care so as to protect the environment
Warning	Do not try to solve unspecified troubles of Single Phase Self-Priming Monoblocks as it may lead to severe damage to the pump or injury to personnel. Contact the dealer where this pump was purchased

12. Preventive maintenance checks

PRECAUTIONS TO BE TAKEN

Warning

Disconnect the power supply before starting maintenance or inspection of the pump to avoid electrical shock

Note

If you find any damages or abnormalities, switch OFF the pump and report the problem to the dealer from whom the set was purchased

NOTE: The manufacturer assumes no responsibility for damage or injury due to disassembly in the field.

A definite schedule of preventive maintenance inspections should be established to avoid breakdown, serious damage and / or extensive downtime. The schedule will depend on operating conditions and experience with similar equipment. Below checklist does not represent an exhaustive survey of maintenance steps necessary to ensure safe operation of the Single Phase Self-Priming Monoblock.

Warning

The pump must never be operated with the delivery valve shut-off as the current drawn is maximum at shut-off conditions, resulting in damage to the motor

Warning

Utilise the services of an electrician to carry out electrical measurements / checking the function

It is good practice to monitor the conditions and performance of the Single Phase Self-Priming Monobloc. Diagnosis may be carried out by checking the following:

/	Checking the current drawn by the pump at the duty flow rate.
~	Both these data should be compared to corresponding data recorded when the unit was initially installed.

Any increase in motor current at duty flow rate indicates a possible overload condition,
possibly due to rotating impeller rubbing against the stationary pump casing.

- Measure the insulation resistance of the winding to check the condition of the motor.
- Check for leakage from the Mechanical Seal location.
- Check the capacitance of the capacitor.

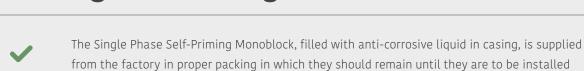
13. Do's and don'ts

Do's	Don'ts
Use a quality foot valve with strainer	Do not install the pump with high static suction lift
Ensure leak proof joints on the suction side to prevent air entry and therefore loss of priming	Do not use piping smaller than what is mentioned on the nameplate
Use as few joints as possible on the suction line	Provide sufficient space around the pumpset so as to ensure proper airflow
After installation, prime the pump	Restrict the number of joints on the cable. More the cable joints, more will be the voltage drop
Rotate the shaft to ensure that pump is not jammed	Do not place the strainer right near the bottom of the well / tank as there is possibility for solids to be entrained with water
Ensure proper earthing is provided	Do not restrict the space behind the cooling cover as this will obstruct the flow of air required for cooling of the motor
Mount the pumpset on a level foundation / surface	Do not use to pump corrosive and flammable liquids
While powering up the pumpset, ensure the direction of rotation of the shaft, looking from the cooling fan side, is clockwise	Do not earth to a water line or gas line
Rubber gaskets assembled on the pumpset do not have a central hole. Cut out the central hole and reinstall	Do not cover the product as this will prevent effective cooling of the motor
Check all fasteners are tight	Do not keep the pump suction tapering down towards the pump suction to prevent air lock
Motor portion of pumpset is IP44 protected. Provide protection from rain	Do not operate the pump at shut-off conditions
Operate the pump in the specified operating head range	As far as possible, avoid the usage of elbows. Prefer long radius bends

Do's	Don'ts
Pump shall be used for clear water	Do not use flexible pipes on the suction side as they can get pinched and thereby affect the flow
When water is to be pumped from a pipeline, ensure the strainer gasket is fixed between the pump suction flange and corresponding mating portion of the pump casing	Do not operate the pump at very low heads as there is a possibility for the rotating impeller to rub against the casing
The pumpset is to be used for pumping cold clear water	When pumping from a pipeline, never connect the pump suction to the pipe bottom or top or to the air space

14. Important safety instructions

Only qualified personnel should be involved for inspection, maintenance and repairs. The successful and safe operation of such a product depends on proper handling, installation and maintenance. It is suggested that in case of non-functioning of the product, the customer is requested to contact the dealer through whom the purchase was made.

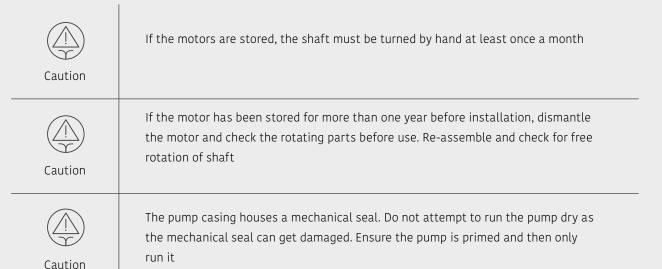


Dange

Hazardous voltage will cause death, serious injury, electrocution. Disconnect all power before working on this equipment.

Maintenance should be performed by only qualified personnel.

15. Storage & handling


Do not store the products under direct sunlight

Handle the pumps with care and do not expose the product to unnecessary impact and shocks

The product should be stored in a closed, dry and well ventilated room

During unpacking and prior to installation, care must be taken when handling the pump to ensure that the product is not subjected to shock loads

If the product has been stored for a very long period, check the condition of the rubber components like suction and delivery flange gaskets and those with the mechanical seal

16. Company contact information

For most up to date information on Texmo Industries, please visit www.taropumps.com

P.B.No. 5303, Mettupalayam Road, Coimbatore - 641 029, India 1800-102-8888 www.taropumps.com info@taropumps.com

Texmo IndustriesEst. 1956

OMMM001A 2020.01